Code No.: 2184

## **MECHANICS OF SOLIDS**

Time Allowed: 2:30 Hours

Maximum Marks: 50

Notes: (i) Attempt all questions.

- (ii) Students are advised to specially check the Numerical Data of question paper in both versions. If there is any difference in Hindi Translation of any question, the students should answer the question according to the English version.
- (iii) Use of Pager and Mobile Phone by the students is not allowed.

Q.1. Attempt any two parts of the following:

 $[2 \times 5 = 10]$ 

- (a) Differentiate between tensile, compressive and shear stresses.
- (b) Describe the graphical construction of Mohr's Circle for a two-dimensional stress system.
- (c) Explain why stress due to a sudden load is twice that of a gradual load.
- Q.2. Attempt any two parts of the following:

 $[2 \times 5 = 10]$ 

- (a) What is the radius of gyration? How is it related to the moment of inertia?
- (b) Draw and explain the bending stress distribution diagram for a simply supported beam under a uniform load.
- (c) A simply supported rectangular beam of width 200mm and depth 300 mm is subjected to a maximum bending moment of 50kN.m. Calculate the maximum bending stress in the beam.
- Q.3. Attempt any two parts of the following:

 $[2 \times 5 = 10]$ 

- (a) Compare solid and hollow shafts in terms of strength and weight. Which one is preferable and why?
- (b) What is the difference between mean torque and maximum torque? Where are they applicable?
- (c) How does a uniformly distributed load (U.D.L.) affect the shear force and bending moment in a beam?
- Q.4. Attempt any two parts of the following:

 $[2 \times 5 = 10]$ 

- (a) How can we determine the maximum bending moment in a beam?
- (b) Define effective length of a column. How does it vary for different end conditions?
- (c) How are the longitudinal and circumferential stresses related in a thin cylinder?
- Q.5. Attempt any two parts of the following:

 $[2 \times 5 = 10]$ 

- (a) What assumptions are made while analyzing thin-walled cylindrical and spherical shells?
- (b) What are the different methods used to calculate slope and deflection in beams?
- (c) A simply supported beam at its ends of length 4 meters carries a point load W at its center. If the slope at the ends of the beam is not to exceed I degree, find the deflection at the center of the beam.

---- X ----

Code No.: 2184

## हिन्दी अनुवाद

नोट : (i) सभी प्रश्नों के उत्तर दीजिए।

(ii) परीक्षार्थियों को सलाह दी जाती है कि वे दोनों संस्करणों में प्रश्न-पत्र के संख्यात्मक आंकड़ों की विशेष रूप से जाँच कर लें। यदि हिन्दी अनुवाद के किसी प्रश्न में किसी प्रकार की भिन्नता है, तो परीक्षार्थी अंग्रेजी अनुवाद के अनुसार प्रश्न का उत्तर दें।

(iii) परीक्षार्थियों को पेजर और मोबाइल फोन के उपयोग की अनुमित नहीं है।

## प्र.1. निम्नलिखित में से किन्हीं दो भागों के उत्तर दीजिए :

 $[2 \times 5 = 10]$ 

(अ) तन्य, संपीड़न और शीयर तनाव के बीच अंतर स्पष्ट कीजिए।

(ब) द्वि-आयामी तनाव प्रणाली के लिए मोहर वृत्त (Mohr's Circle) के ग्राफिकल निर्माण का वर्णन कीजिए।

(स) यह क्यों कहा जाता है कि अचानक भार के कारण उत्पन्न तनाव क्रमिक भार की तुलना में दोगुना होता है?

प्र.2. निम्नलिखित में से किन्हीं दो भागों के उत्तर दीजिए : [2×5=10] (अ) रेडियस ऑफ गाइरेशन (Radius of Gyration) क्या है? यह जड़त्व आधूर्ण (Moment of Inertia) से कैसे

संबंधित है?

(ब) एक समान भार (U.D.L.) से प्रभावित एक सरल समर्थित बीम के लिए झुकाव तनाव वितरण आरेख (Bending Stress Distribution Diagram) बनाइए और समझाइए।

(स) एक सरल अधृत आयताकार बीम जिसकी चौड़ाई 200 मिमी और गहराई 300 मिमी है, अधिकतम मोड़ने वाले आधूर्ण (बेंडिंग मोमेंट) 50kN.m. के अधीन है। बीम में अधिकतम मोड़ने वाले तनाव (बेंडिंग स्ट्रेस) की गणना कीजिए।

प्र.3. निम्नलिखित में से किन्हीं दो भागों के उत्तर दीजिए

 $[2 \times 5 = 10]$ 

(अ) ठोस (Solid) और खोखले (Hollow) शाफ्ट की ताकत और वजन के संदर्भ में तुलना कीजिए। कौन-सा अधिक उपयुक्त है और क्यों?

(ब) माध्य टॉर्क (Mean Torque) और अधिकतम टॉर्क (Maximum Torque) में क्या अंतर है? ये कहाँ लागू होते

(स) एक समान रूप से वितरित भार (U.D.L.) बीम, में कतरण बल (Shear Force) और झुकाव आघूर्ण (Bending Moment) को कैसे प्रभावित करता है?

प्र.4. निम्नलिखित में से किन्हीं दो भागों के उत्तर दीजिए :

 $[2\times5=10]$ 

- (अ) बीम में अधिकतम झुकाव आधूर्ण (Maximum Bending Moment) को कैसे निर्धारित किया जा सकता है?
- (ब) कॉलम की प्रभावी लंबाई (Effective Length) को परिभाषित कीजिए। यह विभिन्न सिरों की स्थितियों (End Conditions) के लिए कैसे बदलती है?
- (स) पतली बेलनाकार खोल (Thin Cylinder) में अनुदैर्घ्य (Longitudinal) और परिधीय तनाव (Circumferential Stress) किस प्रकार जुड़े होते हैं?

प्र.5. निम्नलिखित में से किन्हीं दो भागों के उत्तर दीजिए :

 $[2 \times 5 = 10]$ 

(अ) पतली दीवार वाले बेलनाकार और गोलाकार खोल (Thin-walled Cylindrical and Spherical Shells) का विश्लेषण करते समय कौन-कौन से अनुमान लगाए जाते हैं?

(ब) बीम में ढलान (Slope) और विक्षेपण (Deflection) को गणना करने के लिए कौन-कौन से विभिन्न तरीके उपयोग किए जाते हैं?

(स) एक सरलीकृत रूप से समर्थित बीम जिसकी लंबाई 4 मीटर है, अपने सिरों पर सहारा प्राप्त है और उसके केंद्र पर एक बिंदु भार W कार्य कर रहा है। यदि बीम के सिरों पर अधिकतम ढलान 1 डिग्री से अधिक नहीं होनी चाहिए, तो बीम के केंद्र पर विक्षेपण (deflection) ज्ञात कीजिए।

---- X